Abstract

The Muğla Basin is one of the most well-documented coal basins of Anatolia, SW Turkey. Previous studies mainly focused on coal geology, as well as on the environmental impacts from trace elements emitted into the atmosphere during coal combustion. However, the environmental impacts from coal utilization also include groundwater contamination from hazardous trace elements leached from exposed lignite stockpiles or ash disposal dumps. In the present study a comparative assessment of the combustion, as well as the leaching behaviour of trace elements from sixteen lignite, fly ash and bottom ash samples under various pH conditions is attempted. The samples were picked up from three regions in the Muğla Basin, namely, these of Yeniköy, Kemerköy and Yatağan. Proximate and ultimate analyses were performed on all samples. Quantitative mineralogical analysis was carried out using a Rietveld-based full pattern fitting technique. The elements Ag, As, B, Ba, Be, Co, Cr, Cu, Fe, Ga, Hf, Li, Mn, Mo, Ni, Pb, Sr, U, V and Zn were grouped according to their volatility during combustion and their leachability in the various types of samples. The pH of the leaching agent little affected the leaching trends of most elements and the mode of occurrence proved to be the major factor controlling primarily combustion and to a lesser extent leaching. The elements were classified into 7 classes with increasing environmental significance with Mo, Sr and V being the most potentially hazardous trace elements in the Muğla region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.