Abstract
Recent increases in petroleum fuel costs, corporate average fuel economy (CAFE) regulations, and environmental concerns about CO2 emissions from petroleum based fuels have created an increased opportunity for diesel engines and non-petroleum renewable fuels such as biodiesel. Additionally, the Environmental Protection Agencies Tier II heavy duty and light duty emissions regulations require significant reductions in NOx and diesel particulate matter emissions for diesel engines. As a result, the diesel engine and aftertreatment system is a highly calibrated system that is sensitive to fuel characteristics. This study focuses on the impact of soy methyl ester biodiesel blends on combustion performance, NOx, and carbonaceous soot matter emissions. Tests were completed using a 1.9 L, turbocharged direct injection diesel engine using commercially available 15 ppm ultra low sulfur (ULS) diesel, a soy methyl ester B20 biodiesel blend (20 vol % B100 and 80 vol % ULS diesel), and a pure soy methyl ester biodiesel. Results show a reduction in NOx and carbonaceous soot matter emissions, and an increase in brake specific fuel consumption with the use of biodiesel. Further, traditional methodology assumes that diesel fuels with a high cetane number have a reduced ignition delay. However, results from this study show the cetane number is not the only parameter effecting ignition delay due to increased diffusion burn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.