Abstract
The objective of this study was to experimentally clarify the effect of two-stage split and early injection on the combustion and emission characteristics of a direct-injection (DI) diesel engine. Engine tests were carried out using a single-cylinder high-speed DI diesel engine and an injection system, combining an ordinary jerk pump and an electronically controlled high-pressure injection system, KD-3. In these experiments to compare the combustion and exhaust emission characteristics with two-stage split and early injection, a single-stage and early injection was tested. The FT-IR exhaust-gas analyzer simultaneously measured the exhaust emissions of 26 components. The results showed that HCHO, CH3CHO, and CH3COOH were emitted during the very early stage of both single injection and two-stage injection. These concentrations were higher than those from diesel combustion with ordinary fuel injection timings. These exhaust emissions are characteristic components of combustion by premixed compression ignition with extremely early injection. In particular, the HCHO concentration in exhaust was reduced with an increase in the maximum rate of heat release after cool flame due to pre-reaction of pre-mixture. At extremely early injection, the NOx concentration was extremely low; however, the indicated specific fuel consumption (ISFC) was higher than that of ordinary diesel combustion. In the case of two-stage injection, the degree of constant volume is increased, so that ISFC is improved. These results also demonstrated the possibility of reducing HCHO, NOx, and smoke emissions by means of two-stage split and early injection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.