Abstract

A reduced scale ignition and flame spread technique, RIFT, was implemented in the cone calorimeter system to obtain thermocombustibility properties of enclosure lining materials during flame spread over the sample surface. Previously, a thermal model of ignition and opposed flow flame spread was used to analyze flame spread data obtained using RIFT. Here, a framework is discussed for deducing critical material combustibility parameters from the measured heat release and mass loss rates as the spreading flame proceeds to the point of flame extinction. The nature of the data and analytical framework allows users to deduce spreading flame flux from the heat release rate (HRR) and mass loss rate (MLR) data relatively economically and directly. The anomalies highlighted by comparing flame spread data in the RIFT system compared to data from the BS 476 Part 7 apparatus indicates that the RIFT system is well-suited for developing and refining models describing ignition, flame spread, and mass burning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.