Abstract

Abstract Background Replacing chemical catalysts with biocatalysts is a widely recognized goal of white biotechnology. For biocatalytic processes requiring low water containing media, enzymes for example commercial preparations of lipases, show low catalytic efficiencies. Some high activity preparations for addressing this concern have been described. Protein coated microcrystals (PCMC) constitute one such preparation. The present work describes a Combi-PCMC for synthesis of biodiesel from the oil extracted from spent coffee grounds. Results Different lipases were screened for biodiesel synthesis from crude coffee oil out of which Novozym 435 gave the best conversion of 60% in 4 h. Optimization of reaction conditions i.e. % water, temperature and purification of coffee oil further enhanced conversion upto 88% in 24 h. A mixture of Novozym 435 and a cheap commercially available 1,3-specific lipase RMIM (from Mucor miehei) was used in different ratios and 1:1 was found to be the best trade-off between conversion and cost. The commercial preparations then were replaced by a novel biocatalyst design called Combi-Protein coated microcrystals (Combi-PCMC) wherein CAL B and Palatase were co-immobilized with K2SO4 as the core and this performed equivalent to the commercial preparations giving 83% conversion in 48 h. Conclusion Coffee oil extracted from spent coffee grounds could be used for the synthesis of biodiesel by using appropriate commercial preparations of lipases. The expensive commercially immobilized preparations can also be replaced by a simpler and inexpensive immobilization design called combi-PCMC which synergizes the catalytic action of a nonspecific lipase CAL B and a free form of 1,3-specific lipase from Mucor miehei.

Highlights

  • Replacing chemical catalysts with biocatalysts is a widely recognized goal of white biotechnology

  • Extraction of coffee oil It has been reported that on an average spent coffee grounds yield about 11-20% oil [49]

  • Three phase partitioning [50] using tert-butanol was performed, which resulted in a 4% coffee oil recovery

Read more

Summary

Results

Different lipases were screened for biodiesel synthesis from crude coffee oil out of which Novozym 435 gave the best conversion of 60% in 4 h. % water, temperature and purification of coffee oil further enhanced conversion upto 88% in 24 h. A mixture of Novozym 435 and a cheap commercially available 1,3-specific lipase RMIM (from Mucor miehei) was used in different ratios and 1:1 was found to be the best trade-off between conversion and cost. The commercial preparations were replaced by a novel biocatalyst design called Combi-Protein coated microcrystals (Combi-PCMC) wherein CAL B and Palatase were co-immobilized with K2SO4 as the core and this performed equivalent to the commercial preparations giving 83% conversion in 48 h

Conclusion
Background
Results and discussion
Conclusions
Straathof AJJ
56. Halling PJ
61. Govardhan CP
63. Sheldon RA
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call