Abstract

Strategies to eradicate the vector-borne infectious diseases (e.g. malaria and Japanese encephalitis) are often directed at controlling vectors with insecticides. Spraying insecticide, however, opens the way for the development of insecticide resistance in vectors, which may lead to the failure of disease control. In this paper, we examine whether the combined use of insecticide spray and zooprophylaxis can limit the development of insecticide resistance in mosquitoes. Zooprophylaxis refers to the control of vector-borne diseases by attracting vectors to domestic animals in which the pathogen cannot amplify (a dead-end host). The human malaria parasite Plasmodium spp. has a closed transmission cycle between humans and mosquitoes, and hence cattle can serve as a dead-end host. Our model reveals that, by a suitable choice of insecticide spraying rate and cattle density and location, malaria can, in some situations, be controlled without mosquitoes developing insecticide resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call