Abstract

Collagen type I fingerprinting (ZooMS) has recently been used to provide either palaeoenvironmental data or to identify additional hominin specimens in Pleistocene contexts, where faunal assemblages are normally highly fragmented. However, its potential to elucidate hominin subsistence behaviour has been unexplored. Here, ZooMS and zooarchaeology have been employed in a complementary approach to investigate bone assemblages from Final Mousterian and Uluzzian contexts at Fumane cave (Italy). Both approaches produced analogous species composition, but differ significantly in species abundance, particularly highlighted by a six fold-increase in the quantity of Bos/Bison remains in the molecularly identified component. Traditional zooarchaeological methods would therefore underestimate the proportion of Bos/Bison in these levels to a considerable extent. We suggest that this difference is potentially due to percussion-based carcass fragmentation of large Bos/Bison bone diaphyses. Finally, our data demonstrates high variability in species assignment to body size classes based on bone cortical thickness and fragment size. Thus, combining biomolecular and traditional zooarchaeological methods allows us to refine our understanding of bone assemblage composition associated with hominin occupation at Fumane.

Highlights

  • Bone fragmentation can provide a wealth of detail about site formation and depositional processes, and about butchery practices and subsistence patterns

  • Proteomic approaches, in particular collagen type I peptide mass fingerprinting through Zooarchaeology by Mass Spectrometry analysis (ZooMS21), have been suggested as a biomolecular alternative to study the taxonomic composition of the unidentifiable component of Pleistocene bone assemblages

  • Faunal remains from archaeological sites allow us to reconstruct how hominin populations adapted to changing climates and environments through the detailed study of patterns of hominin subsistence

Read more

Summary

Introduction

Bone fragmentation can provide a wealth of detail about site formation and depositional processes, and about butchery practices and subsistence patterns. Proteomic approaches, in particular collagen type I peptide mass fingerprinting through Zooarchaeology by Mass Spectrometry analysis (ZooMS21), have been suggested as a biomolecular alternative to study the taxonomic composition of the unidentifiable component of Pleistocene bone assemblages Proteins such as collagen type I are phylogenetically informative, accessible, and survive beyond the temporal range of ancient DNA22–24. ZooMS is a proteomic approach that allows taxonomic identification based on protein amino acid sequence variation through peptide mass fingerprinting[21] This method is commonly performed on individual bone specimens in a targeted manner (for example on bone tools, particular taxonomic groups, or for radiocarbon or isotopic studies25–28) and thereby provides quantitative datasets potentially comparable with traditional zooarchaeological studies.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.