Abstract

Optimising the manufacture, and ultimately the mechanical performance, of powder-processed components requires an understanding of how the state of the material evolves during processing and in particular during the final sintering stage. Synchrotron X-ray microtomography has been employed to follow in situ the evolution of particle microstructure during sintering of copper powder. In particular, three-dimensional digital volume correlation of a time-lapse computed tomography image sequence allows accurate quantification of the three-dimensional movements of the particles and thereby local strain for the first time. Strains are quantified both at a coarse scale across the whole powder assembly and at higher magnification for a smaller local region of interest. Unsurprisingly, the rate of shrinkage is observed to decrease with sintering time in accordance with changes in the overall density. Heterogeneities in straining within the body are observed at the several particle level, often associated with anisotropic shrinkage in part associated with non-uniform movement and densification of small aggregates of particles between which significant changes in shrinkage are observed. These differences in shrinkage could be responsible for cracking on further densification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call