Abstract

BackgroundAnoplophora glabripennis (Motschulsky), commonly known as Asian longhorned beetle (ALB), is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees. In Gansu Province, northwest China, ALB has caused a large number of deaths of a local tree species Populus gansuensis. The damaged area belongs to Gobi desert where every single tree is artificially planted and is extremely difficult to cultivate. Therefore, the monitoring of the ALB infestation at the individual tree level in the landscape is necessary. Moreover, the determination of an abnormal phenotype that can be obtained directly from remote-sensing images to predict the damage degree can greatly reduce the cost of field investigation and management.MethodsMultispectral WorldView-2 (WV-2) images and 5 tree physiological factors were collected as experimental materials. One-way ANOVA of the tree’s physiological factors helped in determining the phenotype to predict damage degrees. The original bands of WV-2 and derived vegetation indices were used as reference data to construct the dataset of a prediction model. Variance inflation factor and stepwise regression analyses were used to eliminate collinearity and redundancy. Finally, three machine learning algorithms, i.e., Random Forest (RF), Support Vector Machine (SVM), Classification And Regression Tree (CART), were applied and compared to find the best classifier for predicting the damage stage of individual P. gansuensis.ResultsThe confusion matrix of RF achieved the highest overall classification accuracy (86.2%) and the highest Kappa index value (0.804), indicating the potential of using WV-2 imaging to accurately detect damage stages of individual trees. In addition, the canopy color was found to be positively correlated with P. gansuensis’ damage stages.ConclusionsA novel method was developed by combining WV-2 and tree physiological index for semi-automatic classification of three damage stages of P. gansuensis infested with ALB. The canopy color was determined as an abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the damage degree. These tools are highly applicable for driving quick and effective measures to reduce damage to pure poplar forests in Gansu Province, China.

Highlights

  • Anoplophora glabripennis (Motschulsky), commonly known as Asian longhorned beetle (ALB), is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees

  • A novel method was developed by combining WV-2 and tree physiological index for semi-automatic classification of three damage stages of P. gansuensis infested with ALB

  • The canopy color was determined as an abnormal phenotype that could be directly assessed using remote-sensing images at the tree level to predict the damage degree

Read more

Summary

Introduction

Anoplophora glabripennis (Motschulsky), commonly known as Asian longhorned beetle (ALB), is a wood-boring insect that can cause lethal infestation to multiple borer leaf trees. Anoplophora glabripennis (ALB; Motschulsky; Coleoptera: Cerambycidae: Lamiinae), which is native to Asia regions, is the most dangerous invasive pest of forests and has demonstrated an accelerating growth trend in recent years. It has become an extremely invasive and destructive pest in Europe and North America (Favaro et al 2015). Host plants of ALB are distributed among at least 15 species, mainly including poplar, willow, elm, macro, and birch (Haack et al 2010; Sjöman et al 2014). Northwest China has a temperate continental climate with water shortage, and only single tree species such as Astragalus glabra is planted most often in the region that is extremely vulnerable to diseases and pests. Invasive pests, including ALB, have nearly destroyed the first phase of the Three-North Shelterbelt reforestation, resulting in serious consequences to the local ecology

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call