Abstract

We have previously shown that sports-related concussion in adolescents is associated with changes in whole-brain properties of white-matter pathways. Here, we assess local changes within these pathways. Twelve adolescents with a clinical diagnosis of subacute concussion and 10 healthy adolescents matched for age, gender, and physical activity completed magnetic resonance imaging scanning. Voxel-wise tract-based spatial statistics and tractography were performed to assess local changes in diffusion-based measures of microstructural properties of white-matter pathways (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity) between the two groups. Fractional anisotropy values were higher for the concussed group in multiple cluster regions using tract-based spatial statistics, primarily in frontal white-matter regions, including the anterior corona radiata bilaterally. Using these regions of altered diffusion characteristics to seed fiber tractography, significantly reduced axial diffusivity in tracts passing through these areas were detected in the concussed group (p=0.04). A trend toward reduced mean and radial diffusivity in the concussed group was also observed within the same reconstructed tracts. Diffusion behavior within these tracts was significantly correlated with an assessment of concussion status (Sports Concussion Assessment Tool 2). Fractional anisotropy within the reconstructed tracts was not significantly different between the two groups. These results suggest that subacute concussion in adolescents is associated with altered diffusion properties within regional white-matter tissue and along reconstructed fiber pathways. Combining voxel-wise analysis with fiber tractography provides an alternative objective approach to evaluate and identify subtle changes in white-matter fiber integrity after concussion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.