Abstract
With the increasing demands of the remote surveillance system, the gait based personal identification research has obtained more and more attention from biometric recognition researchers. The gait sequence is easier to be affected by factors than other biometric feathers. In order to achieve better performance of the gait based identification system, in the paper, a local discriminant gait recognition method is proposed by integrating weighted adaptive center symmetric local binary pattern (WACS-LBP) with local linear discriminate projection (LLDP). The proposed method consists of two stages. In the first stage, the robust local weighted histogram feature vector is extracted from each gait image by WACS-LBP. In the second stage, the dimensionality of the extracted feature vector is reduced by LLDP. The highlights of the proposed method are (1) the extracted feature is robust to rotation invariant, and is also tolerant to illumination and pose changes; (2) the low dimensional feature vector reduced by LLDP can preserve the discriminating ability; and (3) the small-sample-size (SSS) problem is avoided naturally. The proposed method is validated and compared with the existing algorithms on a public gait database. The experimental results show that the proposed method is not only effective, but also can be clearly interpreted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.