Abstract

BackgroundMultimodal approaches have been shown to be a promising way to collect data on child development at high frequency, combining different data inputs (from phone surveys to signals from noninvasive biomarkers) to understand children’s health and development outcomes more integrally from multiple perspectives.ObjectiveThe aim of this work was to describe an implementation study using a multimodal approach combining noninvasive biomarkers, social contact patterns, mobile surveying, and face-to-face interviews in order to validate technologies that help us better understand child development in poor countries at a high frequency.MethodsWe carried out a mixed study based on a transversal descriptive analysis and a longitudinal prospective analysis in Malawi. In each village, children were sampled to participate in weekly sessions in which data signals were collected through wearable devices (electrocardiography [ECG] hand pads and electroencephalography [EEG] headbands). Additionally, wearable proximity sensors to elicit the social network were deployed among children and their caregivers. Mobile surveys using interactive voice response calls were also used as an additional layer of data collection. An end-line face-to-face survey was conducted at the end of the study.ResultsDuring the implementation, 82 EEG/ECG data entry points were collected across four villages. The sampled children for EEG/ECG were 0 to 5 years old. EEG/ECG data were collected once a week. In every session, children wore the EEG headband for 5 minutes and the ECG hand pad for 3 minutes. In total, 3531 calls were sent over 5 weeks, with 2291 participants picking up the calls and 984 of those answering the consent question. In total, 585 people completed the surveys over the course of 5 weeks.ConclusionsThis study achieved its objective of demonstrating the feasibility of generating data through the unprecedented use of a multimodal approach for tracking child development in Malawi, which is one of the poorest countries in the world. Above and beyond its multiple dimensions, the dynamics of child development are complex. It is the case not only that no data stream in isolation can accurately characterize it, but also that even if combined, infrequent data might miss critical inflection points and interactions between different conditions and behaviors. In turn, combining different modes at a sufficiently high frequency allows researchers to make progress by considering contact patterns, reported symptoms and behaviors, and critical biomarkers all at once. This application showcases that even in developing countries facing multiple constraints, complementary technologies can leverage and accelerate the digitalization of health, bringing benefits to populations that lack new tools for understanding child well-being and development.

Highlights

  • BackgroundResearch on many determinants of child development, including its underlying biological mechanisms, has accelerated at a fast pace over the last decade

  • This study achieved its objective of demonstrating the feasibility of generating data through the unprecedented use of a multimodal approach for tracking child development in Malawi, which is one of the poorest countries in the world

  • This study demonstrated the feasibility of the unprecedented use of a multimodal approach for collecting data related to child development in Malawi settings

Read more

Summary

Introduction

BackgroundResearch on many determinants of child development, including its underlying biological mechanisms, has accelerated at a fast pace over the last decade. It is well known that early childhood development is a maturational and interactive process, resulting in an ordered progression of perceptual motor, cognitive, language, socioemotional, and self-regulation skills [1,2]. While a lot is known about potential critical or sensitive periods in child development, we know much less about how the effects of different interventions interact, either within or across critical periods [3,4,5]. We know that decreasing malnutrition from ages 2 to 4 years leads to a higher likelihood of future employment [6]. We know that early stimulation from ages 0 to 3 years leads to a higher likelihood of future employment [7]. Multimodal approaches have been shown to be a promising way to collect data on child development at high frequency, combining different data inputs (from phone surveys to signals from noninvasive biomarkers) to understand children’s health and development outcomes more integrally from multiple perspectives

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.