Abstract

There is little remedy for the devastating effects resulting from neuronal loss caused by neural injury or neurodegenerative disease. Reconstruction of damaged neural circuitry with stem cell-derived neurons is a promising approach to repair these defects, but controlling differentiation and guiding synaptic integration with existing neurons remain significant unmet challenges. Biomaterial surfaces can present nanoscale topographical cues that influence neuronal differentiation and process outgrowth. By combining these scaffolds with additional molecular biology strategies, synergistic control over cell fate can be achieved. Here, we review recent progress in promoting neuronal fate using techniques at the interface of biomaterial science and genetic engineering. New data demonstrates that combining nanofiber topography with an induced genetic program enhances neuritogenesis in a synergistic fashion. We propose combining patterned biomaterial surface cues with prescribed genetic programs to achieve neuronal cell fates with the desired sublineage specification, neurochemical profile, targeted integration, and electrophysiological properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.