Abstract
In recent years, deep learning has been applied in numerous fields and has yielded excellent results. Convolutional neural networks (CNNs) have been used to analyze electrocardiography (ECG) data in biomedical engineering. This study combines the Taguchi method and CNNs for classifying ECG images from single heartbeats without feature extraction or signal conversion. All of the fifteen types (five classes) in the MIT-BIH Arrhythmia Dataset were included in this study. The classification accuracy achieved 96.79%, which is comparable to the state-of-the-art literature. The proposed model demonstrates effective and efficient performance in the identification of heartbeat diseases while minimizing misdiagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.