Abstract

Systematic backtracking is used in many constraint solvers and combinatorial optimisation algorithms. It is complete and can be combined with powerful search pruning techniques such as branch-and-bound, constraint propagation and dynamic variable ordering. However, it often scales poorly to large problems. Local search is incomplete, and has the additional drawback that it cannot exploit pruning techniques, making it uncompetitive on some problems. Nevertheless its scalability makes it superior for many large applications. This paper describes a hybrid approach called Incomplete Dynamic Backtracking, a very flexible form of backtracking that sacrifices completeness to achieve the scalability of local search. It is combined with forward checking and dynamic variable ordering, and evaluated on three combinatorial problems: on the n-queens problem it out-performs the best local search algorithms; it finds large optimal Golomb rulers much more quickly than a constraint-based backtracker, and better rulers than a genetic algorithm; and on benchmark graphs it finds larger cliques than almost all other tested algorithms. We argue that this form of backtracking is actually local search in a space of consistent partial assignments, offering a generic way of combining standard pruning techniques with local search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.