Abstract
The present work deals with the advantages in the Hydromechanical Deep Drawing (HDD) when AA5754 Tailored Heat Treated Blanks (THTBs) are adopted. It is well known that the creation of a suitable distribution of material properties increases the process performance. When non heat-treatable alloys are considered, the THTB approach can be successfully applied to increase the Limit Drawing Ratio (LDR) by changing the peripheral zone into the annealed state starting from a cold-worked blank. If this approach is combined with the advantages of a counterpressure, even more remarkable improvements can be achieved. Due to the large number of involved parameters, the optimized design of both the local treatment and the pressure profile were investigated coupling an axial symmetric Finite Element model with the integration platform modeFRONTIER. Results confirmed the possibility of increasing the LDR from 2.0 (Deep Drawing using a blank in the annealed state) up to about 3.0 if combining the adoption of a THTB with the optimal pressure profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.