Abstract

In this study, rapid respirometric microbial testing was combined with 16S rRNA amplicon sequencing, to assess the composition of microbiota in a total of 64 samples of commercial beef, turkey, lamb and pork mince. The O2 sensor-based respirometry system, while producing the anticipated total aerobic viable counts (TVC) data and patterns for most samples, also revealed unusual (linear) respiration profiles for some samples, mostly lamb and pork mince. The TVC values for beef mince, produced by respirometry and calculated using the available calibration equation, correlated well with the conventional plate counting method, ISO 4833-1:2013, 2013, while for the other species the correlation was less good. These effects, not observed in previous studies employing various food matrices, require further investigation. Using the same samples (crude homogenates) as in respirometry, the whole microbiome was also analysed by 16S rRNA amplicon sequencing for each mince-type. The sequencing showed an overall decrease in alpha diversity over shelf-life, with lamb and pork mince maintaining a proportion of rare taxa. Some taxa exhibited significant changes in abundance over shelf-life and after the respirometric analysis, with beef mince exhibiting a decrease in aerobic bacteria and an increase in facultative anaerobes. Beta diversity was also seen to depend on mince-type. Thus, the combined use of respirometry and sequencing techniques shows promise as a useful and unique analytical approach for food quality and safety evaluation, However, more data points and in-depth analysis are required to back up the findings of this initial study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call