Abstract

Recent research has demonstrated the effectiveness of deep subspace learning networks, including the principal component analysis network (PCANet) and linear discriminant analysis network (LDANet), since they can extract high-level features and better represent abstract semantics of given data. However, their representation does not consider the nonlinear relationship of data and limits the use of features with nonlinear metrics. In this paper, we propose a novel architecture combining the kernel collaboration representation with deep subspace learning based on the PCANet and LDANet for facial expression recognition. First, the PCANet and LDANet are employed to learn abstract features. These features are then mapped to the kernel space to effectively capture their nonlinear similarities. Finally, we develop a simple yet effective classification method with squared [Formula: see text]-regularization, which improves the recognition accuracy and reduces time complexity. Comprehensive experimental results based on the JAFFE, CK[Formula: see text], KDEF and CMU Multi-PIE datasets confirm that our proposed approach has superior performance not just in terms of accuracy, but it is also robust against block occlusion and varying parameter configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call