Abstract

Technical trading rules have been utilized in the stock market to make profit for more than a century. However, only using a single trading rule may not be sufficient to predict the stock price trend accurately. Although some complex trading strategies combining various classes of trading rules have been proposed in the literature, they often pick only one rule for each class, which may lose valuable information from other rules in the same class. In this paper, a complex stock trading strategy, namely performance-based reward strategy (PRS), is proposed. PRS combines the two most popular classes of technical trading rules – moving average (MA) and trading range break-out (TRB). For both MA and TRB, PRS includes various combinations of the rule parameters to produce a universe of 140 component trading rules in all. Each component rule is assigned a starting weight, and a reward/penalty mechanism based on rules’ recent profit is proposed to update their weights over time. To determine the best parameter values of PRS, we employ an improved time variant particle swarm optimization (TVPSO) algorithm with the objective of maximizing the annual net profit generated by PRS. The experiments show that PRS outperforms all of the component rules in the testing period. To assess the significance of our trading results, we apply bootstrapping methodology to test three popular null models of stock return: the random walk, the AR(1) and the GARCH(1,1). The results show that PRS is not consistent with these null models and has good predictive ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.