Abstract

Hyperspectral images (HSIs), featured by high spectral resolution over a wide range of electromagnetic spectra, have been widely used to characterize materials with subtle differences in the spectral domain. However, a large number of bands and an insufficient number of sample pixels for each class are challenging for traditional machine learning-based classifiers. As alternative tools for feature extraction, neural networks have received extensive attention. This letter proposes to combine t-distributed stochastic neighbor embedding (t-SNE) with a convolutional neural network (CNN) for HSI classification. Our framework is designed to automatically capture the potential assembly features, which are extracted from both the dimension-reduced CNN (DR-CNN) and the multiscale-CNN. Experimental results show that the proposed classification framework outperforms several state-of-the-art techniques for three real data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.