Abstract
Urban roads are a crucial infrastructure highly demanded by citizens and organizations interested in their deployment, performance, and safety. Urban traffic signal control is an important and challenging real-world problem that aims to monitor and improve traffic congestion. Therefore, the deployment of traffic signals for vehicles or pedestrians at an intersection is a complex activity, as it is necessary to establish rules to control the flow of vehicles and pedestrians. Also, traffic flow at intersections changes constantly, depending, for instance, on weather conditions and day of the week, as well as road works and accidents that further influence complexity and performance. Thus, this work first uses the SysML Block Definition diagram to model the elements (sensor, controller, and actuator) of the architecture of an urban traffic signal control system. Next, Petri Nets models are proposed for the internal design of each of these elements. Finally, these Petri Nets models are combined into a complete model by merging common places. As a result, this article describes model integration, i.e., SysML Block Definition diagram and Petri Nets for modeling the architectural elements of an urban traffic signal control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.