Abstract
The existing text detection algorithms based on Convolutional Neural Networks (CNN) commonly have the problems of insufficient receptive fields and inadequate extraction of spatial positional information, which limit their ability to detect large-scale variation text instances, long-distance and wide-spaced text instances as well as effectively distinguish complex background textures. To address the above problems, in this paper, a scene text detection algorithm combining Swin Transformer and attention-weighted fusion is proposed. Firstly, an attention-weighted fusion (AWF) module is proposed, which embeds a modified coordinate attention module (CAM) in the feature pyramid network (FPN). This module learns spatial positional weights of foreground information in different-scale features while suppressing redundant background information. As a result, the fused features are more focused on the text regions, enhancing the localization ability for text regions and boundaries. Secondly, the window-based self-attention mechanism of the Swin Transformer is utilized to achieve global feature perception on the fused features of the pyramid network. This compensates for the insufficient receptive fields of CNN and enhances the representation capability of global contextual features, thereby further improving the performance of text detection. Experimental results demonstrate that the proposed algorithm achieves competitive performance on three public datasets, namely ICDAR2015, MSRA-TD500, and Total-Text, with F-measure reaching 87.9%, 91.4%, and 86.7%, respectively. Code is available at: https://github.com/xgli411/ST-AWFNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.