Abstract
Porno video recognition is important for Internet content monitoring. In this paper, a novel porno video recognition method by fusing the audio and video cues is proposed. Firstly, global color and texture features and local scale-invariant feature transform (SIFT) are extracted to train multiple support vector machine (SVM) classifiers for different erotic categories of image frames. And then, two continuous density hidden Markov models (CHMM) are built to recognize porno sounds. Finally, a fusion method based on Bayes rule is employed to combine the classification results by video and audio cues. The experimental results show that our model is better than six state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of China Universities of Posts and Telecommunications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.