Abstract

Combustion optimization has recently demonstrated its potential to reduce NOx emissions in high capacity coal-fired utility boilers. In the present study, support vector regression (SVR), as well as artificial neural networks (ANN), was proposed to model the relationship between NOx emissions and operating parameters of a 300 MW coal-fired utility boiler. The predicted NOx emissions from the SVR model, by comparing with that of the ANN-based model, showed better agreement with the values obtained in the experimental tests on this boiler operated at different loads and various other operating parameters. The mean modeling error and the correlation factor were 1.58% and 0.94, respectively. Then, the combination of the SVR model with ant colony optimization (ACO) to reduce NOx emissions was presented in detail. The experimental results showed that the proposed approach can effectively reduce NOx emissions from the coal-fired utility boiler by about 18.69% (65 ppm). A time period of less than 6 min was required for NOx emissions modeling, and 2 min was required for a run of optimization under a PC system. The computing times are suitable for the online application of the proposed method to actual power plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.