Abstract

Purpose: This study was initiated to evaluate the advantages of using three-dimensional time-of-flight magnetic resonance angiography (3D TOF MRA), as an adjuvant to conventional stereotactic angiography, in obtaining three-dimensional information about an arteriovenous malformation (AVM) nidus and in optimizing radiosurgical treatment plans. Methods and Materials: Following angiography, contrast-enhanced MRI and MRA studies were obtained in 22 consecutive patients undergoing Gamma Knife radiosurgery for AVM. A treatment plan was designed, based on the angiograms and modified as necessary, using the information provided by MRA. The quantitative analysis involved calculation of the ratio of the treated volume to the MRA nidus volume (the tissue volume ratio [TVR]) for the initial and final treatment plans. Results: In 12 cases (55%), the initial treatment plans were modified after including the MRA information in the treatment planning process. The mean TVR for the angiogram-based plans was 1.63 (range 1.17–2.17). The mean coverage of the MRA nidus by the angiogram-based plans was 93% (range 73–99%). The mean MRA nidus volume was 2.4 cc (range 0.6–5.3 cc). The MRA-based modifications resulted in increased conformity with the mean TVR of 1.46 (range 1.20–1.74). These modifications were caused by MRA revealing irregular nidi and/or vascular components superimposed on the angiographic projections of the nidi. In a number of cases, the information from MRA was essential in defining the nidus when the projections of the angiographic outlines showed different superior and/or inferior extent of the nidus. In two cases, MRA revealed irregular nidi, correlating well with the angiograms and showed that the angiographically acceptable plans undertreated 27% of the MRA nidus in one case and 18% of the nidus in the other case. In the remaining 10 cases (45%), both MRI and MRA failed to detect the nidus due to surgical clip artifacts and the presence of embolizing glue. Conclusions: The 3D TOF MRA provided information on irregular AVM shape, which was not visualized by angiography alone, and it was superior to MRI for defining the AVM nidus. However, when imaging artifacts obscured the AVM nidus on MRI and MRA, angiography permitted detection of AVM. Utilizing MRA as a complementary imaging modality to angiography increased accuracy of the AVM radiosurgery and allowed for optimal dose planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.