Abstract

AbstractThis paper shows how stereo and Time-of-Flight (ToF) images can be combined to estimate dense depth maps in order to automate plant phenotyping. We focus on some challenging plant images captured in a glasshouse environment, and show that even the state-of-the-art stereo methods produce unsatisfactory results. By developing a geometric approach which transforms depth information in a ToF image to a localised search range for dense stereo, a global optimisation strategy is adopted for producing smooth and discontinuity-preserving results. Since pixel-by-pixel depth data are unavailable for our images and many other applications, a quantitative method accounting for the surface smoothness and the edge sharpness to evaluate estimation results is proposed. We compare our method with and without ToF against other state-of-the-art stereo methods, and demonstrate that combining stereo and ToF images gives superior results.KeywordsColour ImageDepth DataStereo ImageStereo MatchDepth EdgeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.