Abstract

The use of stem and progenitor cells in cardiovascular therapy has been proposed as a feasible option to promote repair of tissue damage by ischemia, or to devise definitive artificial tissue replacements (valves, vessels, myocardium) to be surgically implanted in patients. Whereas in other medical branches such as dermatology and ophthalmology the use of ex vivo grown tissues is already accessible to a large degree, the use of bio-artificial implants in cardiovascular surgery is still marginal. This represents a major limitation in cardiovascular medicine at present. In fact, the limited durability and the lack of full compatibility of current implantable devices or tissues prevent a long-term resolution of symptoms and often require re-intervention thereby further increasing the economic burden of the cardiovascular disease. Stem cell technology can be of help to derive tissues with improved physiologic function and permanent durability. Specifically, the intrinsic ability of stem cells to produce tissue-specific "niches", where immature cells are perpetuated while differentiated progenitors are continuously produced, makes them an ideal resource for bioengineering approaches. Furthermore, recent advancements in biocompatible material science, designing of complex artificial scaffolds and generation of animal or human-derived natural substrates have made it feasible to have ex vivo reproduction of complex cell environment interactions - a process necessary to improve stem cells biological activity. This review focuses on current understanding of cardiovascular stem cell biology as well as tissue engineering and explores their interdisciplinary approach. By reviewing the relevant recent patents which have enabled this field to advance, it concentrates on various design substrates and scaffolds that grow stem cells in order to materialize the production of cardiovascular implants with enhanced functional and self-renewal characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.