Abstract

Protein structure prediction and protein-protein docking are important and widely used tools, but methods to confidently evaluate the quality of a predicted structure or binding pose have had limited success. Typically, either knowledge-based or physics-based energy functions are employed to evaluate a set of predicted structures (termed "decoys" in structure prediction and "poses" in docking), with the lowest energy structure being assumed to be the one closest to the native state. While successful for many cases, failures are still common. Thus, improvements to structure evaluation methods are essential for future improvements. In this work, we combine multibody statistical potentials with dynamics models, evaluating fluctuation-based entropies that include contributions from the entire structure. This leads to enhanced selection of native-like structures for CASP9 decoys, refined ClusPro docking poses, as well as large sets of docking poses from the Benchmark 3.0 and Dockground data sets. The data used include both bound and unbound docking, and positive results are found for each type. Not only does this method yield improved average results, but for high quality docking poses, we often pick the best pose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.