Abstract
BYPASS is a rule-based learning algorithm designed loosely after John Holland’s Classifier System (CS) idea. In essence, CSs are incremental data processors that attempt to (self-)organize a population of rules under the guidance of certain reinforcement policy. BYPASS uses a reinforcement scheme based on predictive scoring and handles conditions similar to those in standard classification trees. However, these conditions are allowed to overlap; this makes it possible to base individual predictions on several rules (just like in committees of trees). Moreover, conditions are supplied with simple bayesian predictive distributions that evolve as data are processed. The paper presents the details of the algorithm and discusses empirical results suggesting that statistical and reinforcement-based learning blend together in interesting and useful ways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.