Abstract

We present an iterative technique in which model checking and static analysis are combined to verify large software systems. The role of the static analysis is to compute partial order information which the model checker uses to reduce the state space. During exploration, the model checker also computes aliasing information that it gives to the static analyzer which can then refine its analysis. The result of this refined analysis is then fed back to the model checker which updates its partial order reduction. At each step of this iterative process, the static analysis computes optimistic information which results in an unsafe reduction of the state space. However, we show that the process converges to a fixed point at which time the partial order information is safe and the whole state space is explored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call