Abstract
Program debugging is a time-consuming task, and researchers have proposed different kinds of automatic fault localization techniques to mitigate the burden of manual debugging. Among these techniques, two popular families are spectrum-based fault localization (SBFL) and statistical debugging (SD), both localizing faults by collecting statistical information at runtime. Though the ideas are similar, the two families have been developed independently and their combinations have not been systematically explored. In this paper we perform a systematical empirical study on the combination of SBFL and SD. We first build a unified model of the two techniques, and systematically explore four types of variations, different predicates, different risk evaluation formulas, different granularities of data collection, and different methods of combining suspicious scores. Our study leads to several findings. First, most of the effectiveness of the combined approach contributed by a simple type of predicates: branch conditions. Second, the risk evaluation formulas of SBFL significantly outperform that of SD. Third, fine-grained data collection significantly outperforms coarse-grained data collection with a little extra execution overhead. Fourth, a linear combination of SBFL and SD predicates outperforms both individual approaches. According to our empirical study, we propose a new fault localization approach, PREDFL (Predicate-based Fault Localization), with the best configuration for each dimension under the unified model. Then, we explore its complementarity to existing techniques by integrating PREDFL with a state-of-the-art fault localization framework. The experimental results show that PREDFL can further improve the effectiveness of state-of-the-art fault localization techniques. More concretely, integrating PREDFL results in an up to 20.8% improvement w.r.t the faults successfully located at Top-1, which reveals that PREDFL complements existing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.