Abstract

Weak lensing (WL) clustering is studied using 2D (angular) coordinates, while redshift space distortions (RSD) and baryon acoustic oscillations (BAO) use 3D coordinates, which requires a model dependent conversion of angles and redshifts into comoving distances. This is the first paper of a series, which explore modelling multi-tracer galaxy clustering (of WL, BAO and RSD), using only angular (2D) cross-correlations in thin redshift bins. This involves evaluating many thousands cross-correlations, each a multidimensional integral, which is computationally demanding. We present a new algorithm that performs these calculations as matrix operations. Nearby narrow redshift bins are intrinsically correlated, which can be used to recover the full (radial) 3D information. We show that the Limber approximation does not work well for this task. In the exact calculation, both the clustering amplitude and the RSD effect increase when decreasing the redshift bin width. For narrow bins, the cross-correlations has a larger BAO peak than the auto-correlation because smaller scales are filtered out by the radial redshift separation. Moreover, the BAO peak shows a second (ghost) peak, shifted to smaller angles. We explore how WL, RSD and BAO contribute to the cross-correlations as a function of the redshift bin width and present a first exploration of non-linear effects and signal-to-noise ratio on these quantities. This illustrates that the new approach to clustering analysis provides new insights and is potentially viable in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.