Abstract
Quantitative estimation of contrast agent concentration is made possible by spectral CT and material decomposition. There are several approaches to modulate the sensitivity of the imaging system to obtain the different spectral channels required for decomposition. Spectral CT technologies that enable this varied sensitivity include source kV-switching, dual-layer detectors, and source-side filtering (e.g., tiled spatial-spectral filters). In this work, we use an advanced physical model to simulate these three spectral CT strategies as well as hybrid acquisitions using all combinations of two or three strategies. We apply model-based material decomposition to a water-iodine phantom with iodine concentrations from 0.1 to 5.0 mg/mL. We present bias-noise plots for the different combinations of spectral techniques and show that combined approaches permit diversity in spectral sensitivity and improve low concentration imaging performance relative to the those strategies applied individually. Better ability to estimate low concentrations of contrast agent has the potential to reduce risks associated with contrast administration (by lowering dosage) or to extend imaging applications into targets with much lower uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of SPIE--the International Society for Optical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.