Abstract

Brain-computer interface (BCI) is to provide a communication channel that translates human intention reflected by a brain signal such as electroencephalogram (EEG) into a control signal for an output device. In recent years, the event-related desynchronization (ERD) and movement-related potentials (MRPs) are utilized as important features in motor related BCI system, and the common spatial patterns (CSP) algorithm has shown to be very useful for ERD-based classification. However, as MRPs are slow nonoscillatory EEG potential shifts, CSP is not an appropriate approach for MRPs-based classification. Here, another spatial filtering algorithm, discriminative spatial patterns (DSP), is newly introduced for better extraction of the difference in the amplitudes of MRPs, and it is integrated with CSP to extract the features from the EEG signals recorded during voluntary left versus right finger movement tasks. A support vector machines (SVM) based framework is designed as the classifier for the features. The results show that, for MRPs and ERD features, the combined spatial filters can realize the single-trial EEG classification better than anyone of DSP and CSP alone does. Thus, we propose an EEG-based BCI system with the two feature sets, one based on CSP (ERD) and the other based on DSP (MRPs), classified by SVM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call