Abstract

The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy by employing mixed-precision iterative refinement. Most recent work has focused on dense systems. We investigate the potential of mixed-precision iterative refinement to enhance methods for sparse systems based on approximate sparse factorizations. In doing so, we first develop a new error analysis for LU- and GMRES-based iterative refinement under a general model of LU factorization that accounts for the approximation methods typically used by modern sparse solvers, such as low-rank approximations or relaxed pivoting strategies. We then provide a detailed performance analysis of both the execution time and memory consumption of different algorithms, based on a selected set of iterative refinement variants and approximate sparse factorizations. Our performance study uses the multifrontal solver MUMPS, which can exploit block low-rank factorization and static pivoting. We evaluate the performance of the algorithms on large, sparse problems coming from a variety of real-life and industrial applications showing that mixed-precision iterative refinement combined with approximate sparse factorization can lead to considerable reductions of both the time and memory consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.