Abstract

AbstractIn this paper, we compare the effectiveness of basic acoustic features and genre annotations when adapting a music similarity model to user ratings. We use the Metric Learning to Rank algorithm to learn a Mahalanobis metric from comparative similarity ratings in in the MagnaTagATune database. Using common formats for feature data, our approach can easily be transferred to other existing databases. Our results show that genre data allow more effective learning of a metric than simple audio features, but a combination of both feature sets clearly outperforms either individual set.KeywordsMusic Information RetrievalMusic RecommendationComputational ModellingMusic SimilarityMusic Perception

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.