Abstract

Forest aboveground biomass (AGB) is a critical measure of ecosystem structure and plays a key role in global carbon cycling. Due to its widespread availability, optical remotely sensed data are key for regional- and global-scale AGB assessment, and with the planned and recent launches of spaceborne imaging spectroscopy missions such as the Environmental Mapping and Analysis Program (EnMAP), understanding the benefit of added spectral information for AGB mapping is important. We used simulated EnMAP imagery derived from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) imagery acquired over Sonoma County, California, USA in combination with Landsat time series to map forest AGB. A Gaussian Process Regression model was implemented to estimate forest AGB from one- and two-date (April and June) EnMAP imagery. A lidar-based reference AGB map was used as base data for training and validation sample extraction. As a comparison, we used corresponding Landsat Best Available Pixel (BAP) composites as well as a year-long 16-day interpolated Landsat time series (TS) for 2013. EnMAP imagery was able to effectively map forest AGB, with the two-date model (RMSE = 97.5 Mg/ha) outperforming the two single date models. All EnMAP models outperformed the corresponding Landsat BAP models, the best of which was the two-date model (RMSE = 108.8 Mg/ha). The added temporal dimension of the Landsat time series resulted in the best Landsat-based AGB map (RMSE = 102.3 Mg/ha). Combining the two datasets further improved AGB mapping efforts, with 2-date EnMAP + 2013 Landsat TS providing the best overall AGB maps (RMSE = 86.0 Mg/ha). This study demonstrates not only the added value of hyperspectral imagery for forest AGB mapping, but also the possible synergies between hyperspectral and multispectral data sources and hence between spectrally and temporally dense information. It can be expected that with the next generation of spaceborne hyperspectral sensors, the combination of dense spectral and temporal data will work to further improve global efforts for mapping forest AGB from optical Earth observation data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call