Abstract

The development of agricultural residue ethanol has a profound effect on the environment protection and energy supply. To increase the production efficiency of straw ethanol and reduce operation progress, the single-enzyme-system-three-cellulase gene (sestc) engineered Aspergillus niger and sestc engineered Saccharomyces cerevisiae were combined to produce ethanol using the pretreated rice straw as the substrate. The present results showed that both the step-by-step and in situ saccharification and fermentation can effectively produce ethanol using rice straw as the carbon substrate. The conversion rates of ethanol were 12.76 and 14.56g per 1kg of treated rice straw, respectively, via step-by-step and in situ processes. In situ process has higher ethanol conversion efficiency of rice straw and fewer operation processes as compared with step-by-step process. Therefore, in situ saccharification and fermentation is a more economical and effective pathway to convert rice straw into ethanol. This study provides a reference to the conversion of lignocellulosic residues into ethanol with a combination of two kinds of sestc engineered strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.