Abstract

The work is devoted to the calculation of static elastic fields in 3D-composite materials consisting of a homogeneous host medium (matrix) and an array of isolated heterogeneous inclusions. A self-consistent effective field method allows reducing this problem to the problem for a typical cell of the composite that contains a finite number of the inclusions. The volume integral equations for strain and stress fields in a heterogeneous medium are used. Discretization of these equations is performed by the radial Gaussian functions centered at a system of approximating nodes. Such functions allow calculating the elements of the matrix of the discretized problem in explicit analytical form. For a regular grid of approximating nodes, the matrix of the discretized problem has the Toeplitz properties, and matrix–vector products with such matrices may be calculated by the fast fourier transform technique. The latter accelerates significantly the iterative procedure. First, the method is applied to the calculation of elastic fields in a homogeneous medium with a spherical heterogeneous inclusion and then, to composites with periodic and random sets of spherical inclusions. Simple cubic and FCC lattices of the inclusions which material is stiffer or softer than the material of the matrix are considered. The calculations are performed for cells that contain various numbers of the inclusions, and the predicted effective constants of the composites are compared with the numerical solutions of other authors. Finally, a composite material with a random set of spherical inclusions is considered. It is shown that the consideration of a composite cell that contains a dozen of randomly distributed inclusions allows predicting the composite effective elastic constants with sufficient accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.