Abstract
AbstractBiodiversity surveys may require the use of multiple types of sampling gear to maximize the efficiency of species detections, yet few studies have investigated how to optimally distribute effort among gear. In this study, we conducted eDNA metabarcoding and capture‐based sampling surveys (electrofishing, fyke netting, gillnetting, and seining) to sample fish species richness in a large northern temperate lake. We evaluated the success of the sampling methods individually and in combination to determine the allocation of effort and cost across sampling gear that provides the optimal approach for lake‐wide species inventories. We found that eDNA metabarcoding detected more species than any other sampling method, including 11 species that were not detected with any capture‐based approach. Optimal gear combination analyses revealed that detected species richness is maximized when most of the effort or budget is allocated to eDNA metabarcoding, with smaller allocations to seining and fyke netting. eDNA metabarcoding and capture sampling gear showed similar patterns of spatial heterogeneity in the fish community across habitat types, with pelagic samples forming a group that was distinct from nearshore samples. Our results indicate that eDNA metabarcoding is a rapid and cost‐efficient tool for biodiversity monitoring and that assessing the complementarity of multiple sampling types can inform the development of optimal approaches for measuring fish species richness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.