Abstract

In general, decision support is one of the main purposes of model-based analysis of systems. Response surface methodology (RSM) is an optimization technique that has been applied frequently in practice, but few automated variants are currently available. In this paper, we show how to combine RSM with numerical analysis methods to optimize continuous time Markov chain models. Among the many known numerical solution methods for large Markov chains, we consider a Gauss-Seidel solver with relaxation that relies on a hierarchical Kronecker representation as implemented in the APNN Toolbox. To effectively apply RSM for optimizing numerical models, we propose three strategies which are shown to reduce the required number of iterations of the numerical solver. With a set of experiments, we evaluate the proposed strategies with a model of a production line and apply them to optimize a class-based queuing system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.