Abstract
Imbalanced datasets exist widely in real life. The identification of the minority class in imbalanced datasets tends to be the focus of classification. The twin support vector machine (TWSVM) as a variant of enhanced SVM provides an effective technique for data classification. In the paper, we propose to combine a re-sampling technique, which utilizes over-sampling and under-sampling to balance the training data, with TWSVM to deal with imbalanced data classification. Experimental results show that our proposed approach outperforms other state-of–art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.