Abstract

Monitoring the transcutaneous permeation of exogenous molecules using conventional techniques generally requires long pre-analytical preparation or labelling of samples. However, Raman spectroscopy is a label-free and non-destructive method which provides spatial distribution of tracked actives in skin. The aim of our study was to prove the interest of Raman imaging coupled with multivariate curve resolution alternating least square (MCR-ALS) analysis in monitoring retinol penetration into frozen and living human skin. After topical treatment of skin samples by free or encapsulated retinol, thin cross sections were analysed by Raman imaging (up to 100µm depth). Mann-Whitney test was used to identify retinol spectroscopic markers in skin. MCR-ALS was used to estimate retinol contribution in Raman spectral images. Heat maps were constructed to compare the distribution of free and encapsulated retinol in skin models. We identified the bands at 1158, 1196 and 1591cm-1 as specific features for monitoring retinol in skin. Moreover, our MCR-ALS results showed an improvement of retinol penetration (up to 30µm depth) with the encapsulated form as well as storage reservoir formation in stratum corneum, for each skin model. Finally, greater retinol penetration into living skin was observed. This study shows a proof of concept for the evaluation of retinol penetration in skin using Raman imaging coupled with MCR-ALS. This concept needs to be validated on more subjects to include inter-individual variability but also other factors affecting skin permeation (age, sex, pH, etc). Our study can be extended to other actives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.