Abstract

The functionalization of nonwoven textiles can be realized by dry powder impregnation. In order to develop and improve this process, two complementary approaches have been combined: product engineering and inherent safety. It consists in integrating ab-initio consumers' requirements, production constraints as well as safety and environmental considerations. This case study is focused on the proposal, the characterization and the selection of powders mixtures of flame retardants and copolyesters, which will be used to create fire-proofed textiles. The influences of the chemical natures of the flame retardant (e.g. calcium carbonate, aluminium trihydroxide, ammonium polyphosphates), their respective concentrations, particle diameters and the addition of silica to flame retardant/polymer mixtures on their minimum ignition energy has been investigated. It has been determined that ammonium polyphosphates are far more efficient than other flame-retardants and that a minimum of 20%wt. concentration is needed to generate a powder mixture that will be almost insensitive to ignition by an electrostatic source. Modifying the particle size distribution and introducing glidants play also a significant role on flame retardant/polymer interactions, on powder dispersibility and has a strong impact on the minimum ignition energy. Finally, the formulations which have been selected fulfill the requirements for fire resistance, flowability, prevention of dust explosion; they are non-toxic, environmentally friendly and their cost is reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.