Abstract

In order to investigate the eutrophication degree of Yuqiao Reservoir, a hybrid method, combining principal component regression (PCR) and artificial neural network (ANN), was adopted to predict chlorophyll-a concentration of Yuqiao Reservoir’s outflow. The data were obtained from two sampling sites, site 1 in the reservoir, and site 2 near the dam. Seven water variables, namely chlorophyll-a concentration of site 2 at time t and that of both sites 10 days before t, total phosphorus(TP), total nitrogen(TN), dissolved oxygen(DO), and temperature from January 2000 to September 2002, were utilized to develop models. To remove the collinearity between the variables, principal components extracted by principal component analysis were employed as predictors for models. The performance of models was assessed by the square of correlation coefficient, mean absolute error (MAE), root mean square error (RMSE) and average absolute relative error (AARE). Results show that the hybrid method has achieved more accurate prediction than PCR or ANN model. Finally, the three models were applied to predicting the chlorophyll-a concentration in 2003. The predictions of the hybrid method were found to be consistent with the observed values all year round, while the results of PCR and ANN models did not fit quite well from July to October.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.