Abstract

In probabilistic forecasting combination formulas for the aggregation of predictive distributions need to be estimated based on past experience and training data. We study combination formulas and aggregation methods for predictive cumulative distribution functions from the perspectives of calibration and dispersion, taking an original prediction space approach that applies to discrete, mixed discrete-continuous and continuous predictive distributions alike. The key idea is that aggregation methods ought to be parsimonious, yet sufficiently flexible to accommodate any type of dispersion in the component distributions. Both linear and non-linear aggregation methods are investigated, including generalized, spread-adjusted and beta-transformed linear pools. The effects and techniques are demonstrated theoretically, in simulation examples, and in case studies, where we fit combination formulas for density forecasts of S&P 500 returns and daily maximum temperature at Seattle-Tacoma Airport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.