Abstract
To improve the direct quantification of Carcinoembryonic Antigen (CEA) from body fluids by immunofluorescence, a surface acoustic wave (SAW) based biosensor was developed combined with an optimized silver nanostructure at the sensing region. Fluorescence signal amplification is achieved by patterning silver nanostructures using the rapid thermal annealing (RTA) method. In addition, the problem of background noise interference from nonspecific binding in human plasma is addressed by Rayleigh wave streaming at the immunoassay region, which shows a reduction in the limit of detection. The results show that the silver nanostructures significantly increase the sensor sensitivity by 49.99-fold and lower the limit of detection of CEA in phosphate buffered saline (PBS) solution to 101.94 pg/mL. The limit of detection of CEA biomarker in human plasma was successfully brought down to 11.81 ng/mL by reducing background noise using Rayleigh SAW streaming. This allows for a point-of-need sensor system to be realized in various clinical biosensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.