Abstract

We present a novel combination of motion planning techniques to compute motion plans for robotic arms. We compute plans that move the arm as close as possible to the goal region using sampling-based planning and then switch to a trajectory optimization technique for the last few centimeters necessary to reach the goal region. This combination allows fast computation and safe execution of motion plans even when the goals are very close to objects in the environment. The system incorporates realtime sensory inputs and correctly deals with occlusions that can occur when robot body parts block the sensor view of the environment. The system is tested on a 7 degree-of-freedom robot arm with sensory input from a tilting laser scanner that provides 3D information about the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.