Abstract

Numerous patients experience articular cartilage defects (ACDs), which are characterized by progressive cartilage degradation and often lead to osteoarthritis (OA). Consequently, 44.7% of OA patients suffer from dyskinesia or disability. Current clinical drug treatments offer limited effectiveness in fully curing the disease. In this study, we propose a collaborative approach that combines physical and biological cues to promote cartilage regeneration. A biodegradable piezoelectric poly (l-lactic acid) (PLLA) nanofiber scaffold facilitates in situ, battery-free electrical stimulation under natural joint loading, while extracellular vesicles (EVs) serve as communication mediators between cells and promote cell proliferation, migration, and secretion of type II collagen. In this combined approach, EVs attached to PLLA are gradually released by localized piezoelectric electrical stimulation and taken up by chondrocytes. This process results in the organization of type II collagen along the PLLA fiber surface, ultimately forming cartilage lacunae that facilitate the residence of new chondrocytes. As an outcome, a significant round cartilage defect (diameter: 3 mm and depth: 1 mm) in the PLLA/EVs group (rat and knee) was rapidly restored within six weeks. In contrast, individual EVs and PLLA groups demonstrated considerably weaker cartilage regeneration capabilities. This research suggests that the synergistic effect of electromechanical stimulation and EVs-based biological cues is a crucial intervention method for treating OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call