Abstract
Because of its acidic and oxidative nature, iron gall ink promotes the endogenous degradation of paper manuscripts. Mechanical damage in areas of concentrated ink application or along mechanically stressed edges or folds results in problems during storage and handling. So far, such strongly degraded areas have usually been stabilized locally with thin Japanese paper and adhesives. A new and innovative material—nanocellulose—is being evaluated as a stabilizer for manuscripts that have been degraded by iron gall ink. The aim of this study is to integrate the nanocellulose application into a multi-stage calcium phytate/calcium hydrogencarbonate treatment to combine deacidification and stabilization, thus avoiding an additional stabilization and drying step. Two different types of fibrillated nanocelluloses were applied on manuscripts damaged by iron gall inks in different treatment steps. The newly formed, interlinked network of nanocellulose and paper was characterised before and after accelerated degradation in closed vials. The effects on the paper cellulose were studied by size exclusion chromatography and light scattering with carbonyl group profiling to follow cellulose hydrolysis and oxidation pathways. In addition, the migration behavior of iron ions was examined by laser ablation coupled with metal analysis (ICP-MS). This paper discusses the applicability and stability of nanocellulose on paper damaged by iron gall ink with regard to its long-term performance. Advantages and limitations are covered in detail.
Highlights
Ink corrosion—a complex degradation process of cellulose in paper—is caused by iron gall ink
The cellulose material had a molecular weight of 310.6 kg/mol (DP 1916) and a whiteness of
The cellulose analysis performed in this study aimed at demonstrating that the extra stabilization step with Cellulose nanofibers/cellulose nanofibrils/nanofibrillated cellulose (CNF) did not compromise the effect of the phytate treatment, and at identifying the best stabilization variant for the implementation of nanofibrillated cellulose among the tested ones
Summary
Ink corrosion—a complex degradation process of cellulose in paper—is caused by iron gall ink. Such damage is a frequent phenomenon in the case of manuscripts or drawings from early Middle Age to the 20th century [1]. Iron gall ink was one of the most common writing media for centuries. Iron(II) sulphate and acid, which are mostly present in excess, are responsible for the degradation of Völkel et al Herit Sci (2020) 8:86 cellulose. They act as catalysts for two essential, largely simultaneous processes:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.